Colour terms: native language semantic structure and artificial language structure formation in a large-scale online smartphone application
Thomas Müller, James Winters, Tiffany Morisseau, Ira Noveck, Olivier Morin

To cite this version:

HAL Id: ijn_03477599
https://jeannicod.ccsd.cnrs.fr/ijn_03477599
Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Colour terms: native language semantic structure and artificial language structure formation in a large-scale online smartphone application

Thomas F. Müller, James Winters, Tiffany Morisseau, Ira Noveck & Olivier Morin

To cite this article: Thomas F. Müller, James Winters, Tiffany Morisseau, Ira Noveck & Olivier Morin (2021) Colour terms: native language semantic structure and artificial language structure formation in a large-scale online smartphone application, Journal of Cognitive Psychology, 33:4, 357-378, DOI: 10.1080/20445911.2021.1900199

To link to this article: https://doi.org/10.1080/20445911.2021.1900199
Colour terms: native language semantic structure and artificial language structure formation in a large-scale online smartphone application

Thomas F. Müller a,b, James Winters a,c, Tiffany Morisseau d,e, Ira Noveck f and Olivier Morin a,g

aMinds and Traditions Research Group, Max Planck Institute for the Science of Human History, Jena, Germany; bCenter for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany; cCollective Computation Group, School of Collective Intelligence, UM6P, Ben Guerir, Morocco; dUniversité de Paris, LAPEA, Boulogne-Billancourt, France; eLAPEA, Université Gustave Eiffel, IFSTTAR, Versailles, France; fLaboratoire de Linguistique Formelle, UMR 7110, University of Paris, CNRS, Paris, France; gInstitut Jean Nicod, ENS, EHESS, PSL University, CNRS, Paris, France

ABSTRACT

Artificial language games give researchers the opportunity to investigate the emergence and evolution of semantic structure, i.e. the organisation of meaning spaces into discrete categories. A possible issue with this approach is that categories might carry over from participants’ native languages, a potential bias that has mostly been ignored. In a referential communication game, we compare colour terms from three different languages to those of an artificial language. We assess the similarity of the semantic structures and test the influence of the semantic structure on artificial language communication by comparing to a separate online naming task providing us with the native language semantic structure. Our results show that native and artificial language structures overlap at least moderately. Furthermore, communicative behaviour and performance were influenced by the shared semantic structure, but only for English-speaking pairs. These results imply a cognitive link between participants’ semantic structures and artificial language structure formation.

ARTICLE HISTORY

Received 18 July 2020
Accepted 3 March 2021

KEYWORDS

semantic structure; artificial language; language evolution; smartphone application; colour terms; categorical facilitation

Introduction

One striking feature of human language is that it exhibits structure on a variety of levels (Everaert et al., 2015). For instance, a limited number of phonological units that are meaningless by themselves are combined into a much higher number of meaningful words (duality of patterning: Hockett, 1960); morphemes (single units of meaning) combine to form more complex phrases; and the semantic space is organised into discrete categories that allow us to structure and successfully communicate an otherwise intractable and inexpressible number of meanings (Lakoff, 1987). This is what we call the semantic structure of a language: It refers to the way a language divides a meaning space into linguistic categories (Youn et al., 2016; “categorical structure” in Carr et al., 2017; Malt et al., 2003). For example, different objects that can be designated by the term “furniture” can be distinguished in English using words such as “chair”, “table”, “sofa”, or “bed”. This is based on the respective features of the objects, like their physical properties and usage (e.g. a chair is used for sitting, while a table is typically used to place objects rather than humans on it; meanwhile, there can still be overlap in properties like having four legs, being made of wood, etc.). Another example would be the domain of colour: Here, discrete colour terms like “red” or “green”, but also “crimson” or “steel-blue”, structure the entire space of colours perceivable by humans to make them communicable to others.

In this study, we investigate the evolution of the semantic structure of colour terms in an artificial language game, namely an online smartphone application called the “Color Game” (Morin et al., 2020). In particular, we link this artificial language, which emerged through repeated interactions between individuals, to the semantic structure found in three natural languages. This is important because almost
none of the past studies that focused on the evolution of semantic structure using artificial language games have been concerned with a possible bias from native language semantic structure. We also draw on previous literature on colour terms and categorical facilitation to ask whether artificial language communication is influenced by the semantic structure inferred from the native language.

Artificial language games, semantic structure, and possible biases

Artificial language games are an appropriate method to study the evolution of linguistic structure in a controlled environment (for an overview, see Galantucci, 2009; Galantucci et al., 2012; Galantucci & Garrod, 2011; Scott-Phillips & Kirby, 2010; Tamariz, 2017). These tasks typically request participants to communicate without a pre-established set of conventional signs. Here, the challenge is to map novel and unusual signals onto a space of meanings. As such, the respective signal space and meaning space are important features of the task. To circumvent the use of natural language, previous experiments have, for example, used non-words (Kirby et al., 2008), spontaneous gesturing (Nölle et al., 2018), or even the movement patterns of a virtual agent (Scott-Phillips et al., 2009). Likewise, meaning spaces in these experiments ranged from moving shapes of different colours (Kirby et al., 2008) to cartoon characters of different professions (Nölle et al., 2018) and differently coloured locations within the game (Scott-Phillips et al., 2009).

How can artificial language games ensure that evolving conventions are novel? Two key features that can help here are the avoidance of prior meanings and the reliance on unusual signals – i.e. “genuinely ‘alien’ form spaces” (Cuskley, 2019, p. 3). One example is the groundbreaking study by Galantucci (2005): Here, pairs of participants were tasked with coordinating to move to the same room in a virtual environment with only a single movement possible for each player. To do so at above chance rates, they had to communicate by making use of a novel graphical communication device. Crucially, the device prevented the use of conventional letters or numbers by only enabling control over the drawings’ horizontal (but not vertical) trace, as well as rapidly fading potential signals as time passed. Still, participants managed to achieve successful communication, which is evidence for the evolution of novel conventions. A similar case is the experiment by Scott-Phillips et al. (2009), who taskied participants with coordinating in a comparable virtual environment. In their case, pairs of participants could not even make use of a pre-defined communication channel, but only observe the partner’s movements in the virtual space instead. Many pairs still managed to establish successful communication through their movements on the screen; in doing so, they had to recognise the meaning of the partner’s movements, and that the partner is attempting to communicate in the first place. Two other examples that made use of highly unusual signal spaces are the studies by Verhoef et al. (2014), who had participants learn and transmit sounds by using a slide whistle, and Cuskley (2019), who used graphemes originally created with ferrofluid ink; however, neither of these studies included a meaning space that the signals had to be mapped onto.

One key artificial language game that we heavily build on is the study by Müller et al. (2019), which investigated whether the amount of visual context shared between the interlocutors in a communicative task would influence the participants’ performance with emergent conventions. In the study, participant pairs had to make use of a selection of black-and-white symbols to communicate the correct colour out of an array of four colours. The amount of visual context shared between the participants was manipulated by granting access either to all four colours or the correct colour only for the participant tasked with communicating. Crucially, symbols had been chosen beforehand to exhibit substantial ambiguity with regard to which colours they could be associated with (making the space, in this context, rather unusual), and participants received neither prior training nor external feedback for the task. In spite of this, the study could show that participant pairs established conventional meanings, peculiar to their respective dyad, for the abstract symbols and that access to the visual context improved pairs’ performance in the task.

We build and expand on this basic design of using colours and black-and-white symbols to study the emergence of semantic structure, which the previous study was not concerned with. Because language exhibits structure on so many different levels, a useful distinction that can be made here is between a structuring of the signals and a structuring of the meanings (Carr et al., 2017). For the most part, previous studies have focused on the former: This normally takes the
form of an unstructured space of signals, which, through repeated interaction and/or transmission to new learners, acquires systematic and conventional rules about their combination and mapping to the meaning space (e.g. Christensen et al., 2016; Kirby et al., 2008, 2015; Nölle et al., 2018; Selten & Warglien, 2007; Winters et al., 2015, 2018; Winters & Morin, 2019). These rules refer to the ‘grammar’ of the artificial language (in a general sense). This first line of experiments provides us with valuable insights into how linguistic features such as compositional or combinatorial structure can evolve. One example study employing a highly unusual signal space is discretized into categories via the formation of conventional signals. Only a few previous experiments (Carr et al., 2017; Perfors & Navarro, 2014; Silvey et al., 2019; Xu et al., 2013) have focused on semantic structure precisely. Perfors and Navarro (2014) let participants learn and transmit typed signals for a meaning space of squares that continuously varied in size, shade, and/or colour) can affect the structure of the emerging signals, in particular when there is a match or mismatch between the two.

Less attention has been devoted to the structuring of the meanings, whereby a continuous (possibly even open-ended: Carr et al., 2017) meaning space is discretized into categories via the formation of conventional signals. Only a few previous experiments (Carr et al., 2017; Perfors & Navarro, 2014; Silvey et al., 2019; Xu et al., 2013) have focused on semantic structure precisely. Perfors and Navarro (2014) let participants learn and transmit typed signals for a meaning space of squares that continuously varied in size and darkness. By manipulating this continuous space to show one extreme, abrupt change in either size or darkness, they were able to show that the semantic structure encoded by the signals tended to reflect the structure of the meaning space. A major influence for our study is the research by Carr et al. (2017), who investigated the effects of both transmission and communication on category systems. They presented participants with a vast space of continuously created triangles that participants had to label. This constituted a particularly uncategorised meaning space, ensuring that meanings had to be structured from scratch within the task. Their experiments show that communication and transmission combined, but not transmission by itself, prompt participants to structure the meaning space as well as the signals themselves. Lastly, Silvey et al. (2019) used a similar (but not open-ended) space of continuously morphed pentagons to also investigate the roles of communication and transmission, separately and combined. They found that communication only increased category structure and alignment when it was also combined with transmission, and in fact that transmission alone eventually would lead to similar benefits.

Experiments conducted in this fashion circumvent one important issue: The resulting structure simply might be a mirror image of the meaning space built in by the experimenter. This can be intended, if the purpose of the task is to demonstrate a dependence on the stimulus set and its arrangement (Little et al., 2017; Nölle et al., 2018; Perfors & Navarro, 2014; Silvey et al., 2015, 2018; Winters et al., 2015, 2018), but becomes a hindrance whenever the evolving structure is meant to be interpreted outside of that view. If a meaning space varies on a set of dimensions with clear-cut unique stimuli that need to be distinguished for successful communication (e.g. black cats vs. white cats vs. black dogs vs. white dogs), participants will overwhelmingly encode the same distinction in the structure (one morpheme for black/white and one for cat/dog). By employing continuous meaning spaces, the few studies focusing on the semantic structure (Carr et al., 2017; Perfors & Navarro, 2014; Silvey et al., 2019; Xu et al., 2013) allowed participants to structure the meanings outside of a forced distinction along clear-cut dimensions, thus circumventing this issue.

One issue not currently addressed is how the natural language of participants influences the evolution of semantic structure in these experiments. Participants are already native speakers of one or more languages at the start of the experiments, and it remains unclear whether a natural language bias influences the outcomes of the task. Although the issue has been recognised early on (Kirby et al., 2008) and past studies have looked into a native language bias regarding a preference for suffixes over prefixes (Martin & Culbertson, 2020) and noun phrase word order (Martin et al., 2019), to our knowledge no study has systematically set out to address this question regarding semantic structure. The study by Xu et al. (2013) is particularly relevant here: In their artificial language task, participants repeatedly learned and transmitted initially random partitions of colour spaces, i.e. subdivisions of a colour space which are named with a single colour term. Participants were limited to pre-set artificial terms to label the colours, the number of
which was fixed within a transmission chain and varied between chains to reflect the number of terms in real-life languages. The authors then compared the partitions at the end of the transmission chains to colour term systems found in the World Color Survey (Kay et al., 2009), representing data on over 100 unwritten real-world languages. Quantifying the difference between the two data sets, the results showed that artificial partitions evolved to become close to colour term systems found in the World Color Survey. Since all the participants in this experiment were native speakers of English, Xu et al. (2013) wanted to rule out this potential native language bias. They compared the results to a control where an independent sample of participants was explicitly instructed to perform the same task by applying the English colour term structure. They found that participants’ systems under the instruction to use the English structure were more similar to one another than to the systems created without this instruction. From this, they concluded “that participants did not simply apply English colour categories when classifying colours” (Xu et al., 2013, p. 7). While we do not contest this statement, this does not exclude any potential bias towards English structure either; especially in light of the result that the experimental colour categories biased towards the ones found in the native language of the studies’ participants. This is our first research question: (1) How similar are the emergent semantic structures in artificial languages to participants’ native language semantic structures?

Colour terms and categorical facilitation

The domain of colour forms a continuous meaning space, which allows for minimal physical differences between colours to the extent that they are indistinguishable for the human eye. It is subject to discrete structure in natural language, as the continuous space is carved up by colour terms such as “red”. Since colours are perceptual phenomena linked to language through colour terms (Witzel, 2018), colour terms have been the most prominent test case for studies on linguistic categorisation, dating back to at least the seminal studies by Brown and Lenneberg (1954) and Berlin and Kay (1969). While neither the debates on linguistic universalism and relativism (e.g. Kay & Kempton, 1984; Kay & Regier, 2006; Regier & Kay, 2009) nor the hierarchy and number of colour terms in the world (Berlin & Kay, 1969; Kay et al., 2009; Kay & Regier, 2003) are our concern here, colour terms are nevertheless a useful framework for our purposes, i.e. testing native language interference in the emergence of artificial language semantic structure.

One particular phenomenon observed by the research on colour terms is that of boundary effects. We can speak of a boundary effect occurring when continuous differences are treated differently across a category boundary as opposed to within the category. This is also known as *categorical perception* (Bornstein, 1987; Harnad, 1987). Studies over the years have observed boundary effects on performance in naming and memory tasks (Roberson et al., 2000, 2005), brain activity as measured by event-related potentials (Thierry et al., 2009), reaction times (Gilbert et al., 2006; Roberson et al., 2008; Winawer et al., 2007; Zhou et al., 2010), and verbal interference (Gilbert et al., 2006; Roberson & Davidoff, 2000). However, the evidence is mixed, with other studies claiming null effects or opposite effects (Brown et al., 2011; Davidoff et al., 2012; Witzel & Gegenfurtner, 2011, 2013; Wright et al., 2015). Witzel (2018) attributed these mixed findings to poor stimulus control in some experiments, and to different levels of processing: Colour perception will always involve basic sensory processing (such as excitation of the cones in the retina), but might, depending on the task, also involve more or less high-level cognitive processes (such as attention or subjective evaluation). Robust effects seem to occur mostly in tasks affording high-level cognitive and directly linguistic processing, such as those involving verbal interference or explicit deliberation on the linguistic categories. This led Witzel (2018) to coin the term *categorical facilitation*, which we adopt in the current study.

One special task that might engage this high-level processing of the colour terms, which has not seen much attention, is referential communication. In particular, intentional communication that involves meta-cognitive processes, such as posited in many frameworks describing human communication (Clark, 1996; Frank & Goodman, 2012; Garrod & Pickering, 2004; Grice, 1989; Scott-Phillips, 2015; Sperber & Wilson, 1996; Tomasello, 2010), is a good candidate for involving the high-level processes mentioned above. For example, following Grice’s (1989) maxim of quantity,
interlocutors should take into account that they and their partner provide as much information as needed, but not more. Testing the referential communication of colours is difficult when using natural language, since participants already possess colour terms, making the task trivial. Instead, we require an artificial language game. Artificial language games do not necessarily engage the high-level processes mentioned above, but can be reasonably expected to if they involve interaction between participants and little to no feedback (Müller et al., 2019). Hence our second research question: (2) Does the semantic structure that we infer from the native language influence communication with an artificial language?

Lastly, sharing a common language obviously makes communication easier. Relying on shared conventions, interlocutors profit in their interaction, since they are closer to mutual understanding already (Lewis, 1969). Transferring this to signalling systems in artificial language games, it applies to the individual signals (e.g. the meaning of a non-word as “red”), but also in a more general sense to the underlying representations: in our case, the semantic structure (e.g. the information of where “red” ends and “orange” begins). Thus, if two interlocutors have different underlying semantic structures (e.g. considering a borderline colour as “red” that the partner classifies as “orange”, even though the general meaning of the terms is mutually understood), they should have a hard time understanding each other. Combining this with native language structure could mean that native speakers of different languages, in which the semantic structures differ, perform worse than pairs that share the same native language when they communicate in an artificial language. This could be the case even though the use of their native languages is blocked. This is what we want to address with our third and last research question: (3) Do mixed-language pairs that show a different semantic structure in their native languages experience more problems in communication?

Method

The Color Game

We address these questions in an online smartphone application, the “Color Game”, designed to evolve an artificial language through communication between its players (Morin et al., 2020). The Color Game was freely available on the Google Play Store and Apple App Store for a runtime of roughly one year. All hypotheses, the exclusion criteria and analysis plan were preregistered before conducting any of the analyses and can be inspected here: https://osf.io/c8nme/. The processed data files and code of the current study can be accessed on the Open Science Framework (https://osf.io/a8bge/). Importantly, the project presented here was part of a larger registration that involved six projects related to the results of the Color Game in total. The application was created with all six projects in mind, and when controls or manipulations concern other projects we outline them as such. The registration documents and results of the other five projects can be viewed here, as well as an in-detail presentation of the application as a whole, and the app’s source code: https://osf.io/9pdzk/files/. The full raw data will be made available after a period of embargo.

Participants

During the runtime of the game, anyone could download it for free and, after a short tutorial, play with another player in one of several game modes. Thus, our approach to the data acquisition for the different projects was not to be limited to a fixed number of participants but adhere to predefined and preregistered exclusion criteria and thresholds, specific to the relevant project (see the Results section for the resulting breakdown after exclusions). Participants agreed to have their data collected in an anonymous format and for research purposes only in a consent form approved at the start of the game. The form and the app itself were approved by the Max Planck Society’s ethical committee.

To make the game easily accessible to a wide audience, we offered the choice of 8 different languages for the instructions and menus in-game: English, German, French, Spanish, Portuguese, Russian, Chinese, and Japanese. Note that this did not mean that players with other native languages were prevented from playing the game; the referential communication task worked without requiring any specific native language, since it was based on the symbols and colours only. In fact, a lot of players chose to play the game in English or some other language, even though their native language was different. This native language was the only personal information players were asked to provide for the research, along with their country of origin. In
this project, we ended up focusing on native speakers of English, German, and French only, since the sample sizes for these three languages allowed for robust analyses (see Results section).

Materials

Designed for the colour perception aspects of this project in particular, the meaning space was a basic constant of the game, used in every mode and not manipulated. Using the CIE2000 colour space (Luo et al., 2001), we constructed a circular selection of 32 colours (Figure 1). We chose this space because it provides a metric for distance between colour hues ("Delta E") that was built to reflect perceptual distance, as opposed to merely physical quantities. The colours are equal in physical luminance and saturation, but show a constant perceptual distance to their two neighbours (Delta E = 7.8). 32 colour arrays were formed from this set of colours by picking every fourth colour, until a four-colours array was formed, using each of the colours as a starting point once (Figure 2). This way, all colours occurred in exactly four arrays. These 32 arrays constituted the communicative contexts for the entire game.

The signal space of the game overall comprised 35 black-and-white symbols (Figure 3). Symbols were initially hand-drawn, then digitised and image processed to make them look cleaner and to standardise them all to the same squared format, taking up equal space on the app display. The symbols were chosen such that they had ambiguous associations with regard to the colours they could be used for, but at the same time allowed the players to solve the communication task above chance level. To achieve this, we drew on our experience with previous similar setups and in particular a previously published study by three of the authors that we also reused several symbols from (Müller et al., 2019). Müller et al. (2019) had shown that associations for the symbols vary sufficiently, leading to stable conventions that still differ between participant pairs. There were an additional five symbols (bottom row of Figure 3) which were not used in the actual game, but only for advertising the application and for the in-game tutorial. This was to avoid prior biasing of the meanings for any of the symbols actually used within the game. Players initially only started with ten random symbols from the signal space that they could use as a sender, but eventually unlocked all of the symbols as they progressed in the game (for details, see Procedure).

Procedure

Regardless of the game mode, the game always brought together two participants to play a referential communication task: One of the players (the sender) was tasked with communicating a colour, using the black-and-white symbols, to the other player (the receiver), who then had to guess this colour out of an array of four colours. Figure 4 shows an example trial and the view from both

Figure 1. The game’s colour space. Each colour is given its associated Hex code (as used by the app). Each of the game’s 32 colours is drawn from the CIE2000 colour space (see Luo et al., 2001), in constant perceptual distance to its left and right neighbours. This includes the first and last colour, meaning that the space is circular and can be represented as on the right. Figure adapted with permission from Morin et al. (2020).
sides. On every trial, participants were shown a randomly chosen array from the space of 32 communicative contexts, and the four colours were arranged in random positions in a 2×2 grid for each participant. On the sender’s side, one of the colours was randomly chosen and marked as a “target colour” by a transparent dot. This left three remaining colours of the array in the role of distractors for the current trial since they were incorrect responses for the receiver. Here, a manipulation was implemented, which was relevant

Figure 2. How colour arrays were built. Top row: The composition of two colour arrays, one marked by white dots, the other by black dots, is shown relative to the colour space. Bottom row: Six contiguous colour arrays (out of 32), including the white-dot and black-dot ones. Figure adapted with permission from Morin et al. (2020).

Figure 3. The 35 symbols used in the game (first four rows). Bottom row, in grey: the five symbols used for the tutorial and for advertising the game. Players were given a random set of 10 symbols at the start and could unlock the full set of 35 symbols by successfully playing the game. Figure adapted with permission from Morin et al. (2020).
for a different project (https://osf.io/qz597/): Senders did not always have access to all four colours like the receiver, but randomly saw one (the target) to four of them (the full array). We control for this randomised variable in our models, where necessary.

Participants always played the game in sets of ten trials. In each trial, the sender could choose up to ten symbols (including reduplications) from their current symbol repository to guide the receiver towards choosing the correct colour from the array. When playing as a sender, symbols were displayed at the bottom of the screen. Tapping a symbol, like on a keyboard, meant it would be displayed in the white row (between the set of symbols and the set of colours). Senders could also remove previously tapped symbols from this row by tapping on them. Receivers were sent the row of symbols, in the original order, and could choose a colour from the array by simply tapping it. From our experience in past laboratory experiments, players typically solve this task by forming meaning conventions on single symbols that stand for a single basic colour term or modifiers such as “dark” or “light” (Müller et al., 2019).

The game never provided feedback about player performance, apart from a general statement announcing how many trials out of the total of ten trials the pair solved correctly (but not which ones), which was displayed at the end of each set of 10 trials. Our reason to avoid trial-by-trial feedback is that it would let receivers know instantly which symbol their sender associates with which colour, allowing them to learn a sender’s code by mere association. After completion of a set, both players were awarded points, depending on their performance.

Progress in the game for the players occurred in the following way: Upon entering the game for the first time, players had to complete a short tutorial explaining the basics of the game. This involved acting on one trial each as a sender and as a receiver, using the tutorial symbols only, and with the same predefined trial for every player. Having completed the tutorial (and every time they entered the game after that), players entered the main lobby screen. Players had the free decision to enter a game with another player of their choice, and also to do so repeatedly and whenever they wanted, a
core difference between our study and classical experiments that makes for more realistic evolutionary dynamics (Morin et al., 2018). When players earned points, they unlocked new symbols and game modes. For the symbols, participants started with a basic set of ten randomly chosen symbols to use as a sender and gradually unlocked new ones every time they upgraded their rank. This was done to create a less taxing start than with a full selection of 35 symbols, to preserve more diversity in symbol-colour mappings, and to motivate the players. For a recurring player, which is the only player base we can make use of in the scientific projects, these symbols could be unlocked rapidly.

All players started with access to basic “synchronous” and “asynchronous” play. Asynchronous play meant that the player could choose to start a set of trials at any time, upon which they played the 10 subsequent colour arrays as a sender. These trials were created by the sender in isolation and solved later by an interested receiver. Senders could decide to send out these asynchronous sets of trials to a receiver of their choice, or to release them publicly. If they did the latter, a number would appear next to their pseudonym for other players indicating the number of sets that the player had created, and anyone could open these sets and try to solve them as a receiver. However, they would have to pay a small amount of points to do so, only increasing their score if they were reasonably successful. Meanwhile, creating sets as a sender was always free. Once a set of trials had been played by any receiver, it was removed from the public lobby for everyone. In contrast, synchronous interactions could happen by inviting another player directly into a set of trials, as the game also showed who was currently available. Synchronous invitations never cost any points. In this mode, players communicated in live interaction and the receiver could see changes to the sender’s communication channel in real time. Additionally, both players could also interact by sending the signs “!” and “?” to one another, the meaning of which was intentionally left open. This was to make the task more interactive and make players relate to the partner, to separate this live communication from the asynchronous situation.

When players had collected a large amount of points in the game, they also unlocked a new “speed mode” to play either asynchronous or synchronous trials in. Here, the rules were the same as before, but time was severely limited. This mode was included to present a constant challenge also for very experienced players and rewarded many points when successful, but also cost a lot of points to enter. The different game modes were included to give more variability to players other than simply the basic task, to assess the importance of live interaction, and to allow for content that players could access anytime, regardless of who else is online. As such, we are not interested in the differences between these modes, but game mode is controlled for in our analyses.

Online survey

We needed baseline data to find the semantic structure that speakers of the three languages use for our (unique) set of colours, using these languages’ basic colour terms. For this purpose, we set up an additional online study, somewhat similar to the method of the World Color Survey (Kay et al., 2009). This online survey was separate and independent from the Color Game and created for the needs of the present study.

Participants

The survey was set up online on Prolific, a platform enabling researchers to recruit participants all over the world in exchange for payment. This study and the Color Game thus used a different sample of participants. For each of the three languages that showed robust sample sizes in the Color Game data (English, German, and French), we got survey data for 50 individuals. Only native speakers of the specific language were able to access the respective online survey. Participants were paid £1 in exchange for their help and time (about 5 min), and gave their informed consent before starting the survey.

Materials

The task made use of the same colour space as the Color Game. We operationalised the native language semantic structure in the form of basic colour terms much like Berlin and Kay (1969), an approach that has proven useful for assessing the naming patterns in different languages worldwide (Kay et al., 2009). The goal was to identify linguistic categories that allow us to study the semantic structure of colours (e.g. for English, “red”, “green”, “blue”, and so on). With a set of basic criteria, we could use a finite number of
language-specific terms that allow for a full description of our colour space. Moreover, by minimising the number of colour terms and avoiding overly specific descriptors (like “crimson” or “steel-blue”), we could more readily find commonalities in the underlying structure of the colour space of participants while opening up the possibility of making robust cross-linguistic comparisons. Examples of other approaches that, like us, have gone beyond observation of the distribution of naming patterns and successfully built on the concept of basic colour terms include agent-based simulations of the emergence of the patterns (Baronchelli et al., 2010; Steels & Belpaeme, 2005) and experiments with human participants to recreate the known real-world patterns (Boster, 1986; Xu et al., 2013).

The basic colour terms that were used for the three languages had been determined in advance by piloting with a small group of native speakers of the respective languages. This was done by freely eliciting the first colour terms that came to mind, and then letting participants map the terms they named onto our space of 32 colours to rule out terms that were not applicable (like “black” or “brown”). The most frequently named colour terms were compared and confirmed to correspond to well-established basic colour terms for English and their respective equivalences in German and French, with one additional term for German, and adopted as displayed in Figure 5. English and French terms turned out to be very similar, both ending up with seven basic terms that applied to our space (note that achromatic terms, i.e. “black”, “white”, and “grey”, do not apply because we only vary hue in the space; and “brown” does not apply because lightness is too high in the space). In contrast, for German our piloting revealed that an eighth “türkis” term should be added, specifically referring to colours in the blue–green spectrum.

Procedure

After participants had given consent, they read the instructions to the task before proceeding. The instructions and the entire task were presented to participants in their respective native language. In the task, the 32 colours of the Color Game’s colour space were presented to the participant, all at the same time, organised in a circular pattern to avoid effects of position and start/end points (see Figure 6). The participants must then provide a label for every colour by associating it with at least one basic colour term. This was done by presenting the respective terms, one by one and in random order, and asking participants to click on all colours in the circle that they associated with that term. Participants’ selected colours appeared at the top of the screen and could be removed from the selection by clicking on them again. When participants were finished with selecting all associated colours for a specific term, they could click “next” and would be presented with the next randomly chosen colour term from their language. Participants continued with labelling colours until all colours had been named; thus, if after a complete cycle of all terms some colours were not named...
yet, these colours were presented for all terms in that language again. Colours could also be named with more than one term, if they were independently chosen for different terms within one cycle of the naming procedure; in fact, this was crucial to account for boundary cases and to mirror the semantic structure of communication in the Color Game, since different symbols could get used for the same colours.

Predictions

Bringing together the data on the native language semantic structure and the artificial language communication in the game, we can address our research questions outlined in the beginning. We do this by applying exploratory factor analysis, a method used to summarise data by reducing its variation to a smaller set of factors that reveal the underlying structure, to the data from the online survey. After that, we try to confirm the semantic structure found in the exploratory factor analysis on the data from the artificial language game by applying a confirmatory factor analysis whose parameters are set to the structure resulting from our baseline. For clarity, from here on we will use the term “color categories” or simply “categories” to refer to these statistical factors. Based on the research questions outlined in the introduction, we made the following predictions:

Research question 1: How similar are the emergent semantic structures in artificial languages to participants’ native language semantic structures?

Prediction 1. We predicted that the categorical structure (assessed by exploratory factor analysis) of the native language should fit the structure of the artificial language. At the very least, a confirmatory model that imposes the native language structure on the artificial language should not get rejected. This would indicate that the artificial language semantic structure reflects the native language structure, to some degree.

Research question 2: Does the semantic structure that we infer from the native language influence communication with an artificial language?

Prediction 2.1. If categorical facilitation is at play for communication in the game, we would expect colour arrays that cross more boundaries between categories to be easier to solve for participant pairs (of the same native language) as compared to colour arrays that cross fewer of these boundaries. This is because, if the colour array covers more natural colour categories, each of the colours within the array should be more nameable.

Prediction 2.2. Taking the target colour of a current trial into account, we also predicted that pairs would send more symbols when a distractor that was part of the same category in the native language structure was present: Presumably, they would realise that a simple symbol representing a meaning such as “blue” would not suffice in this case, and add modifiers, e.g. “dark blue”. This measure complements the simple frequency of boundaries in Prediction 2.1 by focusing directly on the relevant pragmatic contrast that needs to be expressed by the sender in the communicative situation.

Prediction 2.3. Regarding the effects of these same-category distractors on communicative performance, we put forward and preregistered three alternative predictions, supported by different researchers in the project. The first is that player pairs should be more likely to succeed when the target colour is accompanied by one or more same-category distractors, because the use of modifiers could help to identify the target colour more precisely by making a pragmatic inference (if the sender uses a modifier, e.g. “darker”, then the target must be amongst the same-category colours, and be the darker one). The alternative prediction to this is that player pairs should be less likely to succeed under the same circumstances, because colours within the same category should be harder to distinguish than colours across boundaries, and more symbols mean misunderstandings could arise more easily. A third possibility is that the effect of same-category distractors could be dependent on the experience of a pair (i.e. an interaction): With an increasing number of trials between the participants, we could observe a change in the effect for same-category distractors from less success to more success; thus, participants’ performance would first suffer due to colours being harder to distinguish and more misunderstandings because of the higher number of symbols, but profit from the pragmatic specificity later on, leading to higher success.

Research question 3: Do mixed-language pairs that show a different semantic structure in their native languages experience more problems in communication?
Prediction 3. Here, the prediction is that the coordination problems arising from different native language structures would lead to worse performance in pairs not sharing a semantic structure, compared to those that do, but only for items for which their languages do not align.

Results

The following data resulted from the Color Game’s runtime from May 2018 to April 2019: Overall, a total number of 4,277 users accessed the game, providing us with 435,842 trials of raw data. After applying the general exclusion criteria for the data (common to all projects on the Color Game for reasons like bugs, empty trials, or users that did not provide their mother tongue; see “CleanUp” in the online data), we still had 347,606 trials by 2,615 users. Most relevant for our main analyses in this project is the number of senders and same-language pairs sharing a specific mother tongue, as per the preregistration. In principle, we preregistered that we only wanted to analyze data from senders and pairs that were sufficiently involved in the game, since symbol-colour mappings of infrequent players might be too noisy, inaccurate and not as exhaustive with regard to the coverage of the symbol and colour spaces. As such, we set and kept to the fixed cutoff of at least 100 trials played in the game for individual senders, and at least 50 trials played together for individual pairs (regardless of the distribution of role in the pair as sender or receiver). It is important to note that these cutoffs apply to different analyses (concerning prediction 1 and predictions 2–3, respectively). The number of users and trials in the specific subsets of relevant languages (from the preregistration) can be seen in Table 1.

Although we did not reach the cutoffs preregistered for an early analysis in most cases, we still had enough data to perform the planned analyses fully for English, German, and French. Spanish and Chinese had to be dropped due to the lack of data of players with a high number of trials; since it was impossible to fully anticipate the amount of users that the app would attract, sampling issues for some languages were expected, however.

Since we needed it for the baseline on the colour term structure in the respective languages, we start by summarising the results of the online survey. The resulting data was restructured to represent one row for each participant-term pair, i.e. each unique combination of participants and colour terms (e.g. participant 1/red, participant 2/red, participant 1/green, etc.; compare also Jäger, 2012). We can think of this structure as a “profile” for each participant, recording the number of times that each of the 32 colours were associated with a specific term in their language. Then the exploratory factor analysis (EFA from here on) was applied using R version 3.5.1 (R Core Team, 2018). EFA is an exploratory, i.e. data-driven, clustering technique that can be used to reduce datasets that show high dimensionality to a pre-set lower number of dimensions, called “factors”, while describing the data as well as possible. By structuring the data in the way described above, we can summarise the categorisation inherent in individual colour terms and participants, all at once. The number of factors that should be extracted in an EFA can be hard to decide on if there are no predefined conceptions of the dimensions; however, in our case we could simply set it to the number of basic colour terms determined in the piloting study (see Method section) and used throughout the survey. The analysis also reveals the factor loadings, i.e. the strength of association between each variable and the common factors; in our case, these corresponded to the association between colours and their respective terms. Ideally, colours should show high loadings on their common term, but low cross-loadings to other terms. We considered loadings higher than |0.3| to be meaningful. A common approach with EFA is to rotate the factors to reach a simplified orientation to facilitate interpretation; here, we chose promax rotation, as the factors were expected to correlate. The goal of these analyses was to see whether the data would reflect our assumptions concerning the structure, resulting in clean categories that represent the native language terms and show low cross-loadings, with clear

Table 1. Number of senders and same-language pairs that reached the preregistered thresholds of trials for each of the 5 languages we intended to use.

<table>
<thead>
<tr>
<th>Language</th>
<th>senders > 100 trials</th>
<th>pairs > 50 trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Trial count</td>
</tr>
<tr>
<td>English</td>
<td>85</td>
<td>57,086</td>
</tr>
<tr>
<td>German</td>
<td>88</td>
<td>122,116</td>
</tr>
<tr>
<td>French</td>
<td>55</td>
<td>27,226</td>
</tr>
<tr>
<td>Spanish</td>
<td>12</td>
<td>4,437</td>
</tr>
<tr>
<td>Chinese</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
boundaries which then could be used for the further analyses.

The categorical structure of the data from the naming task for the three languages is visualised in Figure 7. In English and German, it reflects the native language terms that were given to participants, with low cross-loadings and clear-cut (i.e. overlap only on single border colours in all but one case) contiguous categories. It is important to emphasise that emerging categories were not pre-defined in the analysis, but easily identifiable as the respective colour terms, confirming our approach. Another positive result is that we observed the highest loadings on colours that are in the centre of categories rather than at the boundaries. The differences between these two languages mostly boiled down to the light blue area in the colour space, which was statistically explained by the “türkis” term in German but subsumed into the general “blue” term in English, with one specific colour in this spectrum even not loading highly on any factor in English. This reflection of our assumptions in the results is not trivial, as can be seen in the French data: Here, we found that the 7-factor EFA resulted in an unexpected lack of a “red” category in favour of a “light blue” category (such as in German). Still, cross-loadings were also low and boundaries clear-cut. The “red” category did appear in the structure when an 8-factor solution was proposed instead. The results for this 8-factor structure only differed meaningfully from the data-driven suggestion with the 7 factors for one single model, which we flag in the analyses below; otherwise, the results for the 7-factor structure are reported.

Prediction 1

We then proceeded with confirmatory factor analyses (CFA from here), trying to replicate the structures found in the EFA by directly fitting it on the communicative data from the Color Game. CFA is the complementary approach to EFA, used to confirm a pre-defined structure by fitting it in a structural equation model. As such, it is able to provide a test of our native language structures’ fit.

Figure 7. Visualisations of the categorical structure resulting from the EFA on the data of the online survey. Boxes represent the 32 colours used in our study. Circles represent categories, named with the term that was most frequently associated with the colours loading on them; these categories are coloured in the hue that has the highest loading. Arrows are drawn for all factor loadings (= the numbers on the arrows) in the EFA that are .3 or higher. **Top left:** English data. **Top right:** German data. **Bottom left:** French data, 7-factor-structure. **Bottom right:** French data, 8-factor-structure.
on the artificial language communication data. We subset the cleaned-up Color Game data to all trials from senders of the three languages that had played at least 100 trials in that role. This data was arranged so that each row represented a unique pairing of a symbol and sender, recording, for each colour and each symbol, whether the symbol was used to indicate the colour (thus mirroring the structure used for the EFA). We then fit the CFA once for each language using *lavaan* (Rosseel, 2012). The structures specified for the models came from the results of the EFA, represented by loading each of the colours that were paired together onto a common factor (only considering loadings greater than .3). Model fit was assessed both by robust CFI and RMSEA estimates, two common measures of fit. As can be seen in Table 2, the CFA was at least a moderate fit for all languages (see the guidelines in Hooper et al., 2008), with values that are moderate to good for German and English. These results tell us that the semantic structure imposed by the natural language data is consistent with the semantic structure in the artificial language, suggesting sufficient similarity between the two such that the confirmatory model is not rejected. Descriptively, colours with high loadings in the CFA also correspond to the colours with high loadings in the EFA (i.e., typically the central colours of a category), and boundaries from the EFA are not contradicted by the loadings of the CFA.

Inspired by the comments of one reviewer regarding the significance of these results, we ran an additional post-hoc CFA to compare these models to a control semantic structure that breaks the initial patterns. We took the original semantic structures suggested by the EFA for each of the three languages, but rotated them by 180° in the colour space. This creates a control structure that is identical in the number of categories, their boundaries, and their order, but breaks their original location in the space. As such, running additional CFAs with these rotated structures and comparing them by their ΔAIC (as an indicator of model quality) allows us to assess whether a semantic structure with a similar number of categories and boundaries can produce similar results or whether the categories’ location in the space is essential for the fit to the artificial language semantic structure. The results show that for all three languages, the difference in fit as assessed by the ΔAIC favoured the structures constructed from the EFAs over their rotated counterparts (English ΔAIC = 1,244; German ΔAIC = 914; French ΔAIC = 1,044). This suggests that the natural language semantic structure derived from EFA shows not only a moderate to good similarity to the artificial language semantic structure in absolute terms, but also in the sense that it matters where the structure boundaries are located even when their number, category size, and order are kept constant. This supports the idea that the fit to the artificial data is not a trivial result, but specific to natural language semantic structure.

Prediction 2.1

Next, we tested whether colours could be communicated more accurately when there were more boundaries present in a given array for a given language. Again, the results of the EFA were taken as a baseline, and by assigning each colour to the category it had the highest loading on, each colour array in the game could be described in terms of how many boundaries were present for each of the three languages (from the view of the full array, regardless of how many colours were shown to the sender). In case of single colours not loading highly on any factor (only relevant for one colour in English and three in French), a full transition between the two categories bordering these colours was needed within the arrays to count the array as exhibiting an additional boundary. Coding the 32 colour arrays in this way for each of the languages revealed that German exhibited much less variation in the number of boundaries than English due to its 8 categories, being limited to arrays that crossed either two or three boundaries (resulting mean number of boundaries in German: \(M = 2.63 \); standard deviation \(SD = 0.49 \); English: \(M = 2.25; SD = 0.76 \)). In French, this depended on whether the 7-factor or the 8-factor structure was used (7-factor: \(M = 2.41; SD = 0.67 \); 8-factor: \(M = 2.44; SD = 0.62 \)), but was overall still more varied than for German.

The analyses were performed on subsets of the data limited to pairs of the same native language

<table>
<thead>
<tr>
<th>Language</th>
<th>n</th>
<th>CFI</th>
<th>RMSEA (95% CI)</th>
<th>Model Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>2,056</td>
<td>.88</td>
<td>.063 (.061-.065)</td>
<td>good to moderate</td>
</tr>
<tr>
<td>German</td>
<td>2,096</td>
<td>.92</td>
<td>.054 (.052-.056)</td>
<td>good to moderate</td>
</tr>
<tr>
<td>French</td>
<td>1,123</td>
<td>.86</td>
<td>.077 (.074-.080)</td>
<td>moderate</td>
</tr>
</tbody>
</table>

Table 2. Goodness of fit measures (robust estimates) for the CFA on the three languages.
that had played at least 50 trials together. We used separate logistic mixed-effects models (lme4 package in R; Bates et al., 2015) for each language to test the effect of the number of boundaries on accuracy on a trial-by-trial level, controlling for the fixed effects of the number of trials a pair had played together and the number of colours in the senders’ array. Random intercepts were added for participant pairs, colour arrays, and the game mode. Random slopes were added for the number of boundaries and then reduced in a step-wise approach until a model could converge with acceptable correlations in the random-effects structure. We then compared the AIC of these final models to the AIC of a simpler model that was identical but had the fixed effect of the number of boundaries removed, respectively. This simpler model should show an increased AIC value to support our hypothesis. As a guideline, we consider a ΔAIC of 2 or greater to be meaningful evidence of a better performing model (Burnham & Anderson, 2004); at the same time, we also report the results of likelihood-ratio tests to see how robust this analytic strategy is. This procedure will be repeated in a similar way for all upcoming analyses. The results for these models can be seen in Table 3. For the English data, the number of boundaries in the arrays had a positive effect on performance. This means that English pairs were better when the colours in a given trial loaded on more different categories (according to English colour terms). For German and French, no such effect could be detected.

Prediction 2.2

We then turned to the analyses investigating whether same-category distractors would impact the number of symbols sent, given the native language semantic structure. For this, we had to restrict the data from the previous models only to trials that showed all 4 colours to the sender (roughly 25% of the data in the analyses for prediction 2.1), since otherwise the sender would not necessarily be aware of the presence of same-category colours. We then coded each trial for whether the colour array presented the sender with a distractor that was part of the same category as the target, given their native language structure (the method for this coding being similar to how the previous analyses were handled): the “distractor” variable. We predicted the number of symbols sent in the given trial by this variable, ignoring reduplications of the same symbol. We did this in separate linear mixed-effects models for each language that again controlled for the fixed effect of the number of trials a pair had played together and the random intercepts of participant pairs, colour arrays, and the game mode played in. Random slopes were added and reduced similarly to the previous analyses. The results for these models can be seen in Table 4. We again found the expected results for the English data, as suggested by the difference in the AIC between the two models. As such, English senders sent more symbols when a same-category distractor was present in a given trial. For German and French, no such difference could be detected; additionally, the direction of the estimate of the effect pointed into the opposite direction. This analysis also is the only case in which the French structure with 8 factors differed meaningfully from the 7-factor structure: Here, the difference between the models became significant, meaning that, only with 8 factors in the structure, French senders sent less symbols when a same-category distractor was present in a given trial.

Prediction 2.3

After that, we also predicted performance by the presence of same-category distractors in three separate models fit to the data used for prediction 2.2. These were logistic mixed-effects models with the same controls as before. Additionally, we included the interaction between the presence of same-category distractors and the trial experience of pairs

<table>
<thead>
<tr>
<th>Language</th>
<th>n</th>
<th>AIC simple model</th>
<th>AIC model including #boundaries</th>
<th>ΔAIC</th>
<th>Likelihood-ratio tests: p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>13,234</td>
<td>15,174.9</td>
<td>15,171.6</td>
<td>3.3</td>
<td>0.022*</td>
</tr>
<tr>
<td>German</td>
<td>37,070</td>
<td>43,074.3</td>
<td>43,075.3</td>
<td>negative</td>
<td>0.326</td>
</tr>
<tr>
<td>French</td>
<td>3,981</td>
<td>5,193.2</td>
<td>5,193.9</td>
<td>negative</td>
<td>0.250</td>
</tr>
</tbody>
</table>

JOURNAL OF COGNITIVE PSYCHOLOGY 371
in another set of models and tested these against the models including the main effects only. Again, there was a difference between the simplest model and the model including the distractor variable for English, but it was close to non-significance (ΔAIC of 1.9 and p-value of .049; see Table 5). This means that English pairs also tended to perform worse when a same-category distractor was present in a trial, but this result is less robust. This supports option 2 from our different predictions, implying that English pairs potentially found colours that belonged to the same native language category harder to communicate. No such effect could be found for German or French, nor for the interaction effect in any of the three languages.

Prediction 3

Lastly, we investigated the performance of mixed-language pairs of speakers of German and English more closely. We focus on these two languages specifically because they have shown an interesting contrast in their exploratory structure for four colours in the blue–green spectrum, and because their structures and analyses have shown clearer results than French so far. Hence, we created a variable coding whether a trial in the data was conducted by a same-language pair or by a mixed-language pair (no matter who was sender or receiver). We tested for an effect of this variable in a model comparison including random effects of participant pairs, colour arrays, and game mode. There was no meaningful difference between the model including the same/different-language variable and the one without (Table 6). After this, we subset the data for an additional analysis concerning the same effect for the four colours mentioned above only. Similar to the results of the first model, there was no difference in the same/different-language variable.

Discussion

By combining the results of the online survey with data collected in the artificial language game, this study was able to compare the Color Game’s referential conventions to the respective semantic structures of English, German, and French, and found a moderate to good correspondence. Our findings provide evidence in favour of similarities between the semantic structures present in the native language of participants and their evolved structures in the artificial language game. One important point to note is that the samples of the online survey and the application were independent. As a consequence, we do not follow individuals’ tendencies to apply their personal semantic structure to artificial language structure, but generalise to

<table>
<thead>
<tr>
<th>Language</th>
<th>n</th>
<th>AIC simple model</th>
<th>AIC model including “distractor” variable</th>
<th>ΔAIC</th>
<th>Likelihood-ratio tests: p-value</th>
<th>Direction of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>3,323</td>
<td>8,503.8</td>
<td>8,499.5</td>
<td>4.3</td>
<td>.012*</td>
<td>positive</td>
</tr>
<tr>
<td>German</td>
<td>9,356</td>
<td>25,717.8</td>
<td>25,717.8</td>
<td>0</td>
<td>.154</td>
<td>negative</td>
</tr>
<tr>
<td>French</td>
<td>995</td>
<td>2,742.3</td>
<td>2,739.9</td>
<td>2.4</td>
<td>.035*</td>
<td>negative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>n</th>
<th>AIC simple model</th>
<th>AIC model including “distractor” variable</th>
<th>AIC model including interaction</th>
<th>ΔAIC</th>
<th>Likelihood-ratio tests: p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>3,323</td>
<td>8,503.8</td>
<td>8,499.5</td>
<td>3,881.4</td>
<td>1.9</td>
<td>negative; negative; negative</td>
</tr>
<tr>
<td>German</td>
<td>9,356</td>
<td>25,717.8</td>
<td>25,717.8</td>
<td>10,909.6</td>
<td>0.602</td>
<td>negative; 0.985</td>
</tr>
<tr>
<td>French</td>
<td>995</td>
<td>2,742.3</td>
<td>2,739.9</td>
<td>1,310.7</td>
<td>0.725</td>
<td>negative; 0.408</td>
</tr>
</tbody>
</table>

Table 4. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of the presence of a same-category distractor on the number of symbols sent in the given trial.

Table 5. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of the presence of a same-category distractor on performance in a given trial. Note the additional column for the AIC including the interaction effect between the distractor variable and the number of trials a pair had played together, and thus the two values for the ΔAIC and likelihood-ratio test columns: The first number indicates the value for the comparison between the simplest model and the model including the main effect, and the second the value for the comparison between the model including the main effect and the model including the interaction effect.
the average behaviour of a native language community instead.

Over the three languages, our EFA of the data gathered in the online survey revealed structures consistent with our expectations based on the concept of basic colour terms and our piloting before the study. First, category boundaries were clear-cut, which implies that participants divided the space by applying mutually exclusive colour terms. This is very much in line with the idea of the basicness of colour terms proposed by Berlin and Kay (1969) and their criterion that the basic categories should not be included in any other colour category. Second, the colour categories resulting from the EFA were also maximally contiguous, with no interruptions within the arrangement of the space. This confirms the validity of our approach to create the colour space in a circle of hue while keeping lightness and saturation constant. Third, colours that were located more centrally within a category showed very high loadings overall, whereas peripheral colours showed the lowest loadings. This is in line with central colours being prototypes within their category (Berlin & Kay, 1969).

Between the three languages, there was one peculiar case with mixed results that came to our attention during the EFA, and it concerned the naming of the colours in the blue–green spectrum. English speakers tended to name one particular colour on this boundary as neither “green” nor “blue”. German speakers applied their eighth term, “türkis”, exclusively in this area, and thus filled the gap that could be seen in the English data. This supports our decision to work with eight German terms after the piloting, and chimes in with research suggesting the growing basicness of the term “türkis” in German (e.g. Zimmer, 1982; Zollinger, 1984). The results for the French speakers were weaker and unexpected, with a category for the blue–green colours instead of a “rouge” category, even though they had not been offered a term for blue–green. While the addition of an eighth factor to the EFA remedied this issue, it is still puzzling, but also shows that this data-driven approach to the semantic structure of the languages by no means guaranteed a way to arrive at the results we had expected. Overall, we believe that the reason for the peculiarities surrounding this exact part of the space lies in the large number of colours that could be classified, in English terms, as either “blue” or “green”. Even though we created the colour space so that neighbouring colours were equidistant, this turned out to be one characteristic feature. French speakers, then, did not group all colours from the blue region together immediately, which is understandable given the high number of colours there (in contrast to the low number of red colours). This touches upon a related point regarding what an “optimal” categorical system to organise our colour space should theoretically look like (see Regier et al., 2007): Given the imbalance between the “red” and “blue” regions, a theoretically optimal system would have to choose to include more colours into the “red” category and less colours into the “blue” category than we find in English and German, such that communicating any colour can be achieved with comparable efficiency. Instead, we find that the participants in the task fall back on, in this sense, “suboptimal” categories close to their native language semantic structure, a central result of the current study.

An important point is that while our results on the CFA speak for similarities between native and artificial language semantic structure, they do not necessarily imply a direct causal link. It might be tempting to argue that native language structure should have caused participants to apply similar structuring in creating the artificial language; however, an alternative explanation could be that a common factor is underlying and causing the structure both in natural and artificial languages. This is one reason for the emphasis in the outline of the paper that we are neither providing support for theories claiming relativity nor those arguing for universalism among colour terms. Instead, we argue for a general cognitive link between the natural and artificial language structures, but do not make claims as to where it might come from.

Table 6. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of same-language vs. different-language pairs on performance in the given trial.

<table>
<thead>
<tr>
<th>Data subset</th>
<th>n</th>
<th>AIC simple model</th>
<th>AIC model including effect</th>
<th>ΔAIC</th>
<th>Likelihood-ratio tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same vs. different language</td>
<td>75,252</td>
<td>89,126.1</td>
<td>89,126.2</td>
<td>negative</td>
<td>.166</td>
</tr>
<tr>
<td>4 colours in the blue-green spectrum only</td>
<td>9,435</td>
<td>10,724.3</td>
<td>10,726.2</td>
<td>negative</td>
<td>.782</td>
</tr>
</tbody>
</table>
A methodological caveat for artificial language studies, then, is to keep this potential confound in mind: When dealing with colours (but possibly with other meaning spaces as well), participants might not create novel structure spontaneously in the task, but rather recreate ones they know from their native language (coming from a relativist stance) or have a general preference for (coming from a universalist stance). Future work would be in a good position to dive deeper into this question, and could in particular concentrate more on the contrast between two specific languages that differ substantially in their native language structures, a sample that our smartphone application could not aim specifically for: We were limited to working with three closely related Indo-European languages that mostly overlapped in their semantic structure. If it turns out that participants in such a sample create artificial language structures that fit well on their own native language, but not on the contrasting language, this would imply that potential biases are language-specific.

Answering research question 2, we also looked more closely at the importance of semantic structure for the communicative performance of pairs of the same language in the game. More precisely, we found that English participant pairs communicated more successfully when colour arrays crossed more boundaries in their native language semantic structure. They also communicated less successfully and sent more symbols when an array contained a distractor that belonged to the same colour category as the target. Regarding the alternative predictions we put forward to answer this question, our data suggest that participants did not profit from additional pragmatic information; nor does the more complex hypothesis involving pairs' experience with the game seem accurate. Instead, given the results, we favour the explanation that same-category distractors are harder for participants to delineate clearly in communication than distractors from a different colour category. This also explains the need for a higher number of symbols in the relevant trials. Overall, the results are the first evidence for categorical facilitation within a communication task, and for artificial language performance and pragmatics being influenced by pre-existing semantic structure. This expands our study from merely observing similarities between artificially generated structure and the structure of participants' native languages (research question 1) to finding concrete behavioural impact of the shared semantic structure. As outlined in the introduction, we believe that communication as a rather involved and explicit task engages linguistic processing of the structure, which in turn facilitates communicating different-category colours in the game.

However, we were not able to observe the same effects that we found for English speakers for either German or French. We believe it is unlikely that the impact of the semantic structure would be specific to English speakers only, especially since we found overlap in the native and artificial structures of German and French that was close to the one for English. Instead, our suggestion is that the most likely explanation for the null effects lies in the stimuli and their performance for German and French: For German, applying the eight basic colour terms to the space meant that colour arrays in the game never showed less than two boundaries for the language, limiting variation in the statistical analysis. For French, the EFA with seven colour terms did not mirror our expectations, leading to an unplanned alternative version with eight terms that suffered from problems similar to the German analysis. For this reason, we also do not put any weight on the result that for the 8-factor structure, French senders sent fewer symbols when a same-category distractor was present; especially since it was unexpected. The conclusion, then, is that stimuli have to be carefully selected with regard to the structure that the respective languages are going to be tested on. Again, future studies with similar aims to ours could profit from explicitly focusing on specific contrasts between two or more languages, designing stimuli in a way that allows all tested languages to vary in the crucial conditions to a reasonable degree.

Regarding our last research question, we did not find differences in performance between mixed pairs of English and German speakers and same-language pairs, neither for the overall colour space nor for the specific set of colours in the blue–green area that we were interested in. For the complete colour space, overlap between the two languages was great, so we did not expect any difference. That native language did not make much of a difference for the four targeted colours was more surprising, however. Presumably, the distinction for an eighth category specifically describing these colours that was found for German was straightforward to incorporate for English speakers as well; again, given our distribution of colour in
the space with a heavy reliance on the blue area, players might have become well aware of the need to distinguish these colours more clearly as they continued playing. This is also visible by the sample of French speakers in the survey who less readily grouped the blue colours together than the ones in other regions of the space. One positive conclusion we can draw from the results on mixed-language pairs is that performance in the artificial language task apparently was rather independent from the native language of one’s partner, suggesting participants were able to adjust to their partners flexibly.

Concerning the choice of a smartphone application as a means to operate our artificial language game, there were several advantages and limitations. We cannot, for instance, be certain that all of our participants had normal colour vision or that some smartphone screens had not been calibrated in ways that significantly bias colour perception (although we did warn about that when players downloaded the game). Another issue stems from the size of the overall project, involving not only this study but six different preregistered projects overall; this led to some design choices (e.g. manipulating the senders’ colour arrays or the different game modes) that were not relevant for the current study and had to be controlled for statistically. We cannot tell whether a direct experiment only dedicated towards addressing our questions could have revealed clearer results in the cases of German and French, and concerning research question 3.

Hopefully, some of these concerns were compensated for by the sheer scale of the project: It is rare to have the opportunity to analyse experimental data that, in the most extreme example, includes over 100,000 trials of native speakers of German. Even if the numbers on other languages and same-language pairs were lower than this and we could not obtain enough data on Spanish and Chinese, the separate data sets used in our final study included several thousand observations, respectively. Even if a conventional online study invested the time and effort to reach a similar scale in sheer numbers, there are still advantages to the approach we have taken here with the smartphone application. In particular, we believe the application allowed us to create more realistic interaction and transmission dynamics (Morin et al., 2018). For the interactions between participants, there was free partner choice: Instead of being forced to interact with the one same person over the course of an entire experiment, participants could decide to switch partners as much as they want, for instance if they could not reach a common convention. For the individual player, there was also the choice of when and for how long they wanted to access the game, as opposed to the fixed and rigid application of trials typical of regular artificial language experiments.

Conclusion

In this study, we investigated the semantic structure of an artificial language that participants evolved by communicating colours, and compared it to the respective native language structure of speakers of English, German, and French. To do so, we combined the results of a large-scale online smartphone application with a separate online survey, whilst building on previous work on colour terms and structure in artificial language games. Our first result is that structures developing in the artificial language fit native language semantic structures to a moderate to good degree, confirming our expectations. This does not necessarily imply a causal effect of natural language on artificial language formation, but at the very least demonstrates a cognitive link between the two, the exact nature of which remains unclear. Our second result showed that the semantic structure shared between the native and artificial language influenced the performance and pragmatics of the artificial language, however only for speakers of English. This is evidence for categorical facilitation in artificial language communication, and for a direct behavioural influence of the semantic structure shared by the artificial and natural languages. Methodologically, we argue (1) that potential biases towards native language structures in artificial language games should be taken into consideration more often, and (2) that meaning spaces used to study several different languages at once should be carefully tailored towards the respective structures within those languages.

Acknowledgements

We would like to thank all people that contributed to the Color Game, either in its creation or as a participant. A summary of acknowledgements regarding these contributions can be found here: https://osf.io/nsxu4/. We also thank one anonymous reviewer for their helpful comments on improving the manuscript, and in particular...
Jon Carr for putting exceptional effort into his reviews and fuelling much insightful discussion around the analyses of the present study.

Data availability statement

The data that support the findings of this study are openly available in the Open Science Framework at https://doi.org/10.17605/OSF.IO/A8BGE.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Thomas F. Müller https://orcid.org/0000-0002-8663-1035

References

